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Abstract— Grasping in cluttered environments is one of the
most fundamental skills in robotic manipulation. Most of the
current works focus on estimating grasp poses for parallel-jaw
or suction-cup end effectors. However, the study for dexterous
anthropomorphic hand grasping in clutter remains a great
challenge. In this paper, we propose HGC-Net, a single-shot
network that learns to predict dense hand grasp configurations
in clutter from single-view point cloud input. Our end-to-end
neural network can predict hand grasp proposals efficiently
and effectively. To enhance generalization, we built a large-
scale synthetic grasping dataset with 179 household objects, 5K
cluttered scenes and over 10M hand annotations. Experiments
in simulation show that our model can predict dense and robust
hand grasps and clear over 78% of unseen objects in clutter
without any post-processing and outperform baseline methods
by a large margin. Experiments on the real robot platform
also demonstrate that the model trained on synthetic data
performs well in natural environments. Code is available at
https://github.com/yimingli1998/hgc net.

I. INTRODUCTION

Grasping is one of the most fundamental manipulation
skills for robots to interact with objects and has been
widely applied in industry and household service. Recent
works mainly focus on grasping objects with parallel-jaw
grippers in structured scenes [1], [2]. However, the study of
anthropomorphic hand grasping in cluttered scenes remains
a challenge.

Previous work on multi-finger hand grasping can be cat-
egorized into two groups: model-based methods and data-
driven methods. Model-based methods assume that both
geometry and pose of the object are known in prior and
sample grasp configurations with commonly used grasping
metrics [3], [4]. However, the high-dimensional degree-of-
freedom of the anthropomorphic hand leads to inefficient
sampling due to the enormous searching space. The re-
quirement of complete models also limits these methods to
generalize to novel objects.

To handle the time-consuming problem and improve the
generalization ability, data-driven methods aim to address
the generic problem and have attached more research atten-
tion. Some of the works focus on human grasp synthesis
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Fig. 1: Overview of the proposed hand grasping method. HGC-Net
is trained offline to predict robustness hand configurations from
the point cloud using a synthetic dataset with 5K clutters and over
10M grasp annotations. When a scene is presented to the robot, the
network takes a point cloud captured by a depth camera as input
and predicts dense grasp configurations efficiently. Grasp with the
highest quality score is selected for the robot to execute.

achieving promising results on both in-domain and out-
of-domain objects [5], [6], [7], [8], while these methods
require complete object models as input to model precise
hand-objects interactions based on contacts. Human hands
are more flexible than robotic hands and enjoy soft-touch
characteristics for grasping. It is challenging to transfer
their models and datasets to robotic hands directly with the
physical properties gap. [9] propose to synthesize functional
grasps in simulation with contact affordance of object mod-
els, while it relies on completed objects model and reliable
contact affordance. [10] generate an anthropomorphic hand
grasp dataset and train a generative-evaluative model to
grasp a single object, which requires complex handcraft rules
to sample grasp proposals. [11] propose a coarse-to-fine
generative model to predict hand configurations from single
RGB-D images with a time-consuming shape completion
module.

Although these approaches achieve significant perfor-
mance for a single object, it is still an open problem
for a robot to grasp generic objects in cluttered scenes
with single-view observation with anthropomorphic hands.
To this end, we propose HGC-Net, an end-to-end efficient
hand grasp generation network that directly predicts grasp
proposals from cluttered scenes, illustrated in Fig. 1. Our
method involves (1) a single-shot neural network that pre-
dicts collision-free hand grasps from a single-view point
cloud; and (2) a scene-level training data synthesis pipeline
leveraging an innovative anthropomorphic hand grasp model.

Our HGC-Net enjoys effective and efficient grasp per-
formance compared with existing methods [10], [11] in
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anthropomorphic hand grasping literature. Previous methods,
like [11], formulate the hand grasping problem as a multi-
stage task with shape reconstruction, grasp generation, and
refinement. The long-term pipeline makes the whole pro-
cedure time-consuming. Besides, grasp proposals generated
from a single object may not be applicable in scenes due to
the potential collision between the hand and around objects.
Unlike these methods, we propose to directly regress the 26-
DOF hand configurations from the raw input in one pass. To
train our model, we build a large-scale grasping dataset in
the simulator [12] automatically. It consists of 5K scenes in
structured clutter with 179 household objects. Point clouds
for each scene are sparsely annotated in terms of: graspable
or not, corresponding grasp types and configurations.

We evaluate our approach on MuJoCo simulator [12] and
real-world robot platform with UR5 arm and HIT-DLR II
anthropomorphic hand. Experiments show that the model
trained on synthetic data performs well on real-world, with
diverse, robust grasp proposals and generalizes well on
unseen objects. Our method shows significant improvement
in both time efficiency and success rate compared with the
baseline method.

In summary, our primary contributions are:
• A large-scale synthetic scene dataset with 179 objects,

5K cluttered scenes, and over 10M five-finger hand
grasp annotations.

• An end-to-end hand grasp proposal network that pre-
dicts robust grasp configurations from single-view point
cloud effectively and efficiently.

• Significant improvement in terms of grasping success
rate and time cost in cluttered scenes compared with
baseline method.

II. RELATED WORK

Model-based vs. data-driven grasp approaches. Tradi-
tional model-based grasp approaches assume that both object
model and environment are accessible [13], [14]. These
methods sample a large number of grasp proposals at first
and measure the grasp quality based on certain metrics [4],
[3]. However, the search policy in high-dimensional space
is time-consuming, and it is difficult to apply to real-world
scenarios because of the lack of complete object models and
unstructured experiments. In recent years, data-driven grasp
methods have attached more attention. Some approaches
propose to detect 2D grasp rectangle to achieve top-down
grasping [15], [16], [17], while a lot of recent works [18],
[1], [2], [19], [20] directly predict 6-DoF grasp poses from a
single-view input. [11], [21] present a coarse-to-fine grasp
method to generate collision-free grasps through a multi-
finger hand.

Parallel-jaw grasping vs. hand grasping. Most literature
focuses on estimating grasp poses of the parallel-jaw gripper,
either take 2D image [15], [16] or point cloud [18], [2],
[22] as input. Although the simplified end effector is suited
for pick-and-place tasks, it is difficult to achieve dexterous
grasping since most household objects are designed for
human hands [9]. Recently, hand-object interactions have

been attached much more attention [6], [23], [5], [24], [7].
Some works provide human hand datasets that label grasp
postures from images or videos [23], [24], or propose to
jointly optimize hand-object contacts and interpenetration by
predicting hand-object affordance map [6], [25], [5].

Anthropomorphic robotic hand vs. human hand. Many
related works on hand grasping focus on human grasp
synthesis [6], [24], [7], [5], [25] based on the MANO
hand model [26]. Although these approaches can generate
realistic hand grasps, the large gap between the human hand
and robotic hand makes it difficult to transfer to robotic
grasping. [9] propose to generate functional grasps based on
the contact map on the object surface and is successfully ap-
plied to different multi-finger hands. [11], [10], [21] propose
to plan dexterous grasps for the specific anthropomorphic
robotic hand and achieve good performance on real-world
robotic grasping.

Grasping in clutter vs. isolated objects. Among learning-
based methods for grasping, most studies focus on dealing
with isolated objects placed on planar surface [17], [27],
especially for high dimensional grippers [11], [28], [10].
However, grasps planned on single objects may not be
accessible in scenes due to the potential collision between the
hand and the environment. Grasping in clutters with multiple
objects is significantly harder because of the limited space to
access the object and occlusions [1], [2]. Some recent works
propose to predict collision-free 6-DoF grasping in clutter
with parallel-jaw grippers [2], [19], [22], [29]. However, it
remains an open problem to grasp generic objects in clutters
with the anthropomorphic hand. To our knowledge, [21] is
the most similar work to ours, which proposes to grasp
scene objects through a multi-stage method, while our model
jointly optimizes grasp poses and hand joints in one pass to
generate collision-free grasps.

III. PROBLEM STATEMENT

In this work, we focus on the problem of predicting robust
grasp poses from the single-view point cloud in cluttered
scenes. HGC-Net tasks single-view point cloud and outputs
point-wise grasp poses with high quality and different types.
Several key definitions are presented here:

Object states: Let Oi and Ti denote object Oi with 6D
pose Ti in a specific scene.

Point clouds: Let Pk ∈ RN×3 denotes the point cloud of
N points in the kth scene captured by depth camera.

Hand grasps: Let H = {H1,H2, · · · ,Hm} denotes the
hand configurations for m objects in a cluttered scene,
where each hand configuration h = (t, q,θ, c) ∈ H1,2,··· ,m.
Specifically, t = (tx, ty, tz) represents the translation while
q = (qw, qx, qy, qz) is the orientation quaternion of the hand
palm. θ ∈ R20 denotes 20-DoF hand joints of our HIT-
DLR II hand. c is the grasp type defined by [θinitc ,θendc ],
which respectively represents the initial and final hand joint
configurations.

IV. DATASET GENERATION

In this section, we introduce the pipeline for our hand
grasp dataset generation. Illustrated in Fig. 2, we label hand
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Fig. 2: Pipeline of our synthetic dataset generation procedure. We
collect single object at first and generate robust hand grasps for
each object in simulation. Objects are randomly selected and placed
on a table to construct clutter scenes. Grasps without collision are
aligned to the scene.

grasp annotations for a single object at first and then match
them to scenes according to the known 6D object pose.
Finally, we adopt a collision detection module to filter invalid
hand grasps.

A. Single Object Grasp Generation

We collect 179 common objects in total with various
shapes and categories from existing datasets and the internet.
We apply the approach-based grasp sampler method[30],
which assumes that the hand approaches the object along
a line that defined by the point normal. We sample 512
points for each object. For each point pk ∈ R3 with normal
nk ∈ R3, we sample uniform depths d ∈ D, in-plane rotation
angles a ∈ A and grasp type c ∈ C to generate dense grasp
candidates, where D,A, C are predefined depth, angle and
type sets. So that the ith hand configuration hik ∈ H for
point pk can be represented as:

hik = (pk −N(ni) · di,Ri,θi, ci)

Ri = [N(ni), N(ri), N(ni × ri)]
(1)

where Ri ∈ R3×3 denotes a rotation matrix equal to qi
and ri ∈ R3 is the hand axis defined by ni and ai. N(∗)
represents the normalization function.

We evaluate grasp quality on the MoJuCo [12] physics
simulator. During the simulation, hand joints are closed from
θinitci to θendci until contact with the object and recorded as
θi. Then fingers keep a minimum grasp force to resist the
gravity on the object to prevent the object from falling. A
slight shaking is also added to filter unstable grasps, and only
successful grasps which keep objects in hand are reserved.
The generated grasps for each grasp type are illustrated in
Fig. 3. For each object, we simulate over 100 thousand grasp
experiments to generate hand grasp configuration labels.

B. Scene Grasp Dataset Generation

The schedule of generating scene grasp dataset consists
of three substeps. At First, we adopt BlenderProc [31] to
simulate structured cluttered scenes. For each scene, m
objects sampled with random poses and then made to freely
fall on a table. RGB-D images are captured by a simulated

(a) (b) (c) (d) (e)

Fig. 3: Five types of HIT-DLR II hand we selected for the single
object grasp generation. (a) Parallel extension. (b) Pen pinch. (c)
Palmar pinch. (d) Precision sphere. (e) Medium wrap.

camera from random views when the objects reach stable
states.

After that, we record object poses{T1, T2, · · · , Tm} for
each scene and transform corresponding hand grasps
{H1,H2, · · · ,Hm} to object coordinates. A collision
checker is applied to filter collided grasps between each grasp
hik ∈ H1,2,··· ,m and the scene. For each grasp type, sampled
points pm1,2,··· ,k of object m with at least one collision-
free grasps are annotated as positive grasp points with hand
configurations, and others are annotated with negative labels.

The last step is to match the point cloud captured by the
camera with sampled grasp point candidates. We apply a KD-
Tree algorithm for each sampled point to search the nearby
points among the point cloud with query radius r = 0.005m.
Scene points in a group will be broadcast the same label as
the sampled point.

V. METHOD

In this section, we present our HGC-Net for dexterous
grasp pose detection in clutter. Given the partially observed
point clouds, HGC-Net predicts point-wise mask and cor-
responding grasp configurations for each predefined grasp
type. The overall pipeline is shown in Fig. 4.

A. Feature Representation

Similar to several previous works which detect parallel-
jaw grasps directly in point clouds, we address the hand
grasp detection problem in a learning-based framework. To
avoid exhaustive searching in SE(3), we propose to directly
predict the 6-DoF grasp pose in a bottom-up manner through
a single-shot neural network.

The proposed hand grasp network is developed based on
PointNet++ [32], a robust model to encode 3D geometry
features for point clouds. To extract point-wise features, we
utilize PointNet++ with a multi-scale grouping strategy as
our backbone network.

B. Grasp Points Segmentation

Given the encoded features, we first utilize a grasp points
segmentation head to classify graspable points for each
predefined grasp type. To decrease the interference caused
by the table, we randomly annotate table points as negative
labels with a sample rate of γ =0.05. We use a weighted
cross-entropy loss to handle the unbalanced distribution of
positive and negative point samples:

Lp,cseg = Fcls(yp,c, ŷp,c), (2)
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Fig. 4: Overview of the proposed method. Given a N × 3 point cloud, our model first extracts hierarchical point features N ×D based
on PointNet++ multi-scale grouping module where D is the dimension of feature vector at each point. For each predefined grasp type,
the network predicts point-wise graspable masks, wrist poses, and hand joints. Finally, the generated grasps are ranked by grasp mask
score and filtered by non-maximum suppression. C, K is the number of predefined grasp types and output grasps, respectively.

where yp,c, ŷp,c respectively denote graspable label and
predicted mask for each labeled point p ∈ Ppos ∪Pneg with
type c. Ppos and Pneg are positive and negative point sets.
The weights, w1 and w2 for p ∈ {Ppos,Pneg} are set to 1.0
and 10.0.

C. Wrist Pose Estimation

It is difficult to directly regress high-dimensional hand
pose in SE(3) [33], [34]. We observe that since the point
mask and position are both known, the 6-DoF hand pose
(t, q) of a graspable point p ∈ Ppos with type c can be
simplified by approach depth dp,c, approach direction np,c,
and hand grasp axis rp,c (Eq. 1).

To predict the 6-DoF wrist pose, we utilize a bin-based
regress method for pose generation inspired by [33], [22]. We
divide n and r into three angles, shown in Fig. 5(a). Azimuth
angle δ1 ∈ [0, 2π] and elevation angle δ2 ∈ [0, π/2] jointly
define the approach direction n. Rotation angle δ3 ∈ [−π, π]
denotes the projected axis r onto X-Y plane.

The target angle δ1, δ2, δ3 are divided into n1, n2, n3 bins
with uniform angle φ1,φ2,φ3 = 2π

n1
, π/2n2

, 2πn3
. For each point

p, we calculate bin classification label and residual label as
follows:

binp,cδi
i=1,2,3

= bδ
p,c
i − δiniti

φi
c

resp,cδi
i=1,2,3

=
1

φi
(δp,ci − δ

init
i − (binp,cδi · φi +

φi
2
)),

(3)

where binδi , resδi are classification and regression labels,
and δiniti is the start angle for δi(i = 1, 2, 3)(Fig. 5(b)).
Similarity, the grasp depth can be defined by bind and resd,
and the grasp pose loss is formulated as:

Lp,c
pose =

∑
w∈{δ1,δ2,δ3,d}

Fcls(binp,c
w , b̂inp,c

w ) + Freg(resp,cw , r̂esp,cw ),

(4)
where binp,cw and resp,cw are ground-truth bin assignment and

residual of point p with type c, b̂inp,cw and r̂esp,cw are predicted

𝛿!
𝛿"

x

y

z

𝛿# 𝑜

𝒏

𝜸

(a)

𝒘

0 1 2𝐛𝐢𝐧 …

𝐫𝐞𝐬

2𝐥𝐚𝐛𝐞𝐥

𝒘

0 1 2𝐛𝐢𝐧 …

𝐫𝐞𝐬

2𝐥𝐚𝐛𝐞𝐥

(b)

Fig. 5: illustrations of hand rotation representation and bin-based
loss. (a) Approach vector n is defined by azimuth angle δ1 and
elevation angle δ2. Hand grasp axis r is located on the plane
orthogonal to the approach vector and its projection on X-Y plane is
δ3. (b) Two examples show the wrist pose label w ∈ {δ1, δ2, δ3,d}
is divide into the classification label binw and regression label resw.
For more details about the loss function, we refer readers to [33].
corresponding values. Fcls and Freg represent cross entropy
loss and smooth L1 loss, respectively.

D. Hand Joint Regression

To improve the grasp quality and generate realistic hand
configurations, we adopt a hand joint prediction layer to
predict precise hand joint θ. For each graspable point p ∈
Ppos and type c, we first normalize the joint label θp,c to
[0, 1], and supervise the predicted hand joint by mean square
error (MSE) loss:

N(θp,c) =
θp,c − θinitc

θendc − θinitc

,

Lp,cjoint = ||N(θp,c)− N̂(θp,c)||22,
(5)

where N(θp,c) denotes the normalized hand joint label,
while N̂(θp,c) is the corresponding prediction. θinitc and
θendc denote the initial and final hand joint of type c.

E. Total Loss

The overall loss of HGC-Net could be formulated as
follows:

Ltotal =
∑

p∈Ppos∪Pneg,c

Lp,cseg +
∑

p∈Ppos,c

(Lp,cpose + L
p,c
joint).

(6)
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The total loss includes two terms, graspable points seg-
mentation and grasp configurations prediction. During infer-
ence, each input point predicts a graspable mask, and grasp
configurations belonging to positive points are regarded as
predicted grasps.

To measure the quality of generated grasps, we rank the
output grasps by grasp points segmentation score with the
softmax function:

sp,c =
ey

pos
p,c

ey
pos
p,c + ey

neg
p,c

, (7)

where yposp,c and ynegp,c are the probability of point p as a
positive or negative grasp point with type c. A pose-NMS
algorithm [19] is also applied to select local maximum within
0.03m and 30◦.

VI. EXPERIMENTS

In this section, we introduce the experimental setup at first,
including the dataset, evaluation metrics, and implementation
details. Then we conduct experiments both in simulation and
on the real robot platform. Experiments demonstrate that our
proposed method can generate dense and robust hand grasp
proposals and achieve a high success rate and completion
rate compared with the baseline method.

A. Experimental Setup

Dataset. Our synthetic hand grasp dataset contains 179
objects for training with over 10M hand grasp annotations.
During training, we generate 5K cluttered scenes, and each
scene contains 10 objects randomly placed on a table with
4 images captured by a virtual camera from different views.

Evaluate metrics. To evaluate our proposed method,
we introduce four quantitative metrics regarding previous
works both in robotic grasping [18], [2] and dexterous hand
manipulation [11], [21]:
• Interpenetration to measure the penetration between

hand mesh and object.
• Grasp success rate (SR) to measure the quality of

generated hand grasps by robotic experiments.
• Grasp completion rate (CR) to measure that how

many objects are successfully grasped in a scene.
• Time cost to measure the grasp efficiency.
Implementation details. For each scene point cloud, we

sample 20,000 points as input. The network is trained for
80 epochs with Adam optimizer. The learning rate is set to
0.01 and decreased by a factor 2 for every 10 epochs with
the batch size of 32.

B. Simulation Experiments

We first conduct experiments based on the MuJoCo simu-
lator [12]. The grasping pipeline is described as follows: At
first, we create 100 cluttered scenes with 10 novel objects
randomly placed on a table. For each scene, a depth camera
takes 4 photos from a random viewpoint above the table.
The network takes the single-view point cloud as input and
outputs point-wise hand configurations for each grasp type.
For each object, we select two grasps with the highest scores

to execute. The interpenetration between object and scene is
calculated through [35]. The maximum simulation step is set
to 1000. We classify successful grasp attempts by judging
whether the anthropomorphic hand can lift the target object
over 20cm.

Wrist pose and hand joint prediction module. We
conduct ablation studies to investigate the effectiveness of
the proposed wrist pose estimation and hand joint regression
module. Specifically, we compare the bin-based loss Lbin
with directly regressing quaternions in SE(3) by calculating
the relative angle:

Ap,c(qp,c, q̂p,c) = arccos(0.5× (Tr (Rp,c · R̂Tp,c)− 1)

Lp,cquat = Ap,c(qp,c, q̂p,c),
(8)

where Ap,c(qp,c, q̂p,c) is the relative angle between predicted
q̂p,c and ground truth qp,c of point p with type c, and
R̂p,c and Rp,c are corresponding rotation matrices. Lquat
represents the quaternion loss. To evaluate the influence of
the joint angles, we remove the hand joint regression module
Mjoint during inference, and utilize initial and final joints
[θinitc ,θendc ] as an alternative: During grasping, the hand
closes from θinitc to θendc until capturing the object.

TABLE I: Ablation Studies in Simulation.

Lbin Lquat Mjoint Interpenetration (cm3)↓ SR (%)↑ CR (%)↑
X 2.72 58.4 66.7

X 4.14 65.6 74.1
X X 5.33 66.2 75.3

X X 7.83 71.9 78.8

Experimental results are shown in Tab. I. The proposed
bin-based loss boosts grasping performance in terms of
success rate and completion rate compared with quaternion
loss. Since bin-based loss and hand joint regression module
help to predict more precise hand wrist pose and joint
angles for tight hand-object contacts, they inevitablely cause
additional interpenetration between hand model and objects.

Grasp quality. To demonstrate the quality and efficiency
of predicted grasps, we evaluate the grasping performance
in terms of SR, CR and compare it with GraspIt! [13].
The experimental settings of our approach are the same as
mentioned above. For GraspIt!, we first sample 360 hand
grasp proposals based on the simulated annealing planner
within 75K steps, and for each object, we choose 2 grasps
with the highest quality according to the ε-metric [3]. Note
that the GraspIt! needs the complete object model to generate
grasp configurations while our approach only takes single-
view point cloud as input.

TABLE II: Grasping Results in Simulation.

Input SR CR
GraspIt! [13] Complete scene model 58.5% 54.3%

HGC-Net Partial point cloud 71.9% 78.8%

As is illustrated in Tab. II, our model outperforms the
baseline method by a large margin in terms of both success
rate and completion rate with 13.4% and 24.5% improvement
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Fig. 6: Qualitative experimental results for robotic grasping. Top: Grasping in structured clutter. Bottom: Grasping in dense clutter.

respectively. Furthermore, we observe that because of the
severe stacking in clutter, GraspIt! is not able to plan
reasonable grasps for the target object within 75K steps,
which causes the lower completion rate.

TABLE III: Time Efficiency.

Method GraspIt! [13] DDGC [21] HGC-Net
Time Cost 40s 9.4s 0.25s

Time efficiency. We compare the time efficiency with
GraspIt! [13] and DDGC [21], as shown in Tab. III. Due
to the large searching space, GraspIt! runs over 100 times
slower compared with our method. DDGC is a multi-
stage method for a three-finger hand grasping in structured
clutters with a serial of modules: scene completion, image
encoding, grasp generation and finger refinement, while the
fine-grained procedures especially for shape completion lead
to high time consumption. Our method shows significant
improvement in terms of time efficiency by the single-shot
network design.

C. Robot Experiments

In order to validate the performance of our model in the
real world, we set up real-world robot experiments on a UR5
robot arm with a HIT-DLR II hand. An Ensenso N35 camera
is mounted on the top of the robot and captures scenes from
backward at a 60-degree viewpoint (shown in Fig. 7). We
prepare 30 objects absent in the training dataset with various
shapes and sizes. Points within a 45cm × 45cm square are
cropped out for input, and the grasp with the highest score is
selected for executing. We utilize ROS to control the robot
arm and adopt MoveIt! [36] for motion planning.

To demonstrate the effectiveness and efficiency of the
proposed HGC-Net, we conduct experiments on both struc-
tured clutter and dense clutter [1]. For structured clutter, we
randomly place 4,8,12 objects to build structured cluttered
scenes with varying difficulty levels. For dense clutter, we
randomly sample 12 objects and pile them together (Fig. 7).
The robot attempts multiple grasps until all objects are
grasped or 6, 12, 18, 18 grasps have been attempted. Each
experiment is conducted for 5 times.

As shown in Tab IV, our method achieves 66.7% success
rate and 78.1% completion rate on average in structured
clutter, and 55.4% success rate and 68.3% completion rate in
dense clutter. Qualitative results shown in Fig. 6 demonstrate

Fig. 7: Setting of real-world robot experiments. Left: The whole
work space of our UR5 with HIT-DLR II robotic arm-hand system.
Top right: 30 objects absent in the synthetic dataset for grasping.
Middle right: Structured clutter with 12 objects placed. Bottom
right: Dense clutter scene with 12 objects placed.

TABLE IV: Robot Experiments in Cluttered Scenes.

Structure clutter Dense clutter
objects 4 8 12 12

SR 73.9% 67.4% 58.9% 55.4%
CR 85.0% 77.5% 71.7% 68.3%

that our model can generate robust collision-free hand grasps
and generalize well on novel objects. Furthermore, we ob-
serve that our model tend to grasp objects from near-vertical
direction to avoid collisions with surrounding objects.

VII. CONCLUSION

In this work, we propose HGC-Net, an end-to-end hand
grasp proposal network for generating robust hand grasps
efficiently. Given a single-view point cloud, our model can
directly output point-wise collision-free grasp configurations
in cluttered scenes without post-processing. To train the
network, we built a large-scale synthetic dataset with 5K
cluttered scenes and over 10M grasp annotations. Exper-
iments show that the model trained on synthetic dataset
performs well both in simulation and real-world scenarios
and outperforms the baseline method by a large margin. In
future work, we will (1) generalize our method to universal
hand grasping with the different anthropomorphic hands;
(2) improve the precision of hand joint to achieve more
dexterous hand grasping.

719

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on August 08,2023 at 01:36:42 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-dof
grasping for target-driven object manipulation in clutter,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 6232–6238.

[2] Y. Qin, R. Chen, H. Zhu, M. Song, J. Xu, and H. Su, “S4g: Amodal
single-view single-shot se (3) grasp detection in cluttered scenes.”
PMLR, 2020, pp. 53–65.

[3] C. Ferrari and J. F. Canny, “Planning optimal grasps,” in IEEE
International Conference on Robotics and Automation (ICRA), 1992.

[4] V. Nguyen, “Constructing force-closure grasps,” The International
Journal of Robotics Research (IJRR), 1988.

[5] H. Jiang, S. Liu, J. Wang, and X. Wang, “Hand-object contact consis-
tency reasoning for human grasps generation,” in IEEE International
Conference on Computer Vision (ICCV), 2021.

[6] E. Corona, A. Pumarola, G. Alenya, F. Moreno-Noguer, and G. Ro-
gez, “Ganhand: Predicting human grasp affordances in multi-object
scenes,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR, 2020.

[7] S. Brahmbhatt, C. Tang, C. D. Twigg, C. C. Kemp, and J. Hays,
“Contactpose: A dataset of grasps with object contact and hand pose,”
in European Conference on Computer Vision (ECCV), 2020.

[8] Y. Hasson, G. Varol, D. Tzionas, I. Kalevatykh, M. J. Black, I. Laptev,
and C. Schmid, “Learning joint reconstruction of hands and manipu-
lated objects,” in CVPR, 2019.

[9] S. Brahmbhatt, A. Handa, J. Hays, and D. Fox, “Contactgrasp:
Functional multi-finger grasp synthesis from contact,” in IEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019.

[10] U. R. Aktas, C. Zhao, M. Kopicki, A. Leonardis, and J. L. Wyatt,
“Deep dexterous grasping of novel objects from a single view,” arXiv
preprint arXiv:1908.04293, 2019.

[11] J. Lundell, E. Corona, T. N. Le, F. Verdoja, P. Weinzaepfel, G. Rogez,
F. Moreno-Noguer, and V. Kyrki, “Multi-fingan: Generative coarse-to-
fine sampling of multi-finger grasps,” in IEEE International conference
on robotics and automation (ICRA), 2021.

[12] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine
for model-based control,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012.

[13] A. T. Miller and P. K. Allen, “Graspit! A versatile simulator for robotic
grasping,” IEEE Robotics & Automation Magazine, 2004.

[14] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dexterous grasping via
eigengrasps: A low-dimensional approach to a high-complexity prob-
lem,” in Robotics: Science and systems manipulation workshop-
sensing and adapting to the real world (RSS), 2007.

[15] J. Redmon and A. Angelova, “Real-time grasp detection using convo-
lutional neural networks,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 1316–1322.

[16] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” in Robotics:
Science and Systems (RSS), 2017.

[17] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, vol. 34, no.
4-5, pp. 705–724, 2015.

[18] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose
detection in point clouds,” The International Journal of Robotics
Research, vol. 36, no. 13-14, pp. 1455–1473, 2017.

[19] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: a large-
scale benchmark for general object grasping,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11 444–11 453.

[20] H. Duan, P. Wang, Y. Huang, G. Xu, W. Wei, and X. Shen, “Robotics
dexterous grasping: The methods based on point cloud and deep
learning,” Frontiers in Neurorobotics, 2021.

[21] J. Lundell, F. Verdoja, and V. Kyrki, “Ddgc: Generative deep dexterous
grasping in clutter,” arXiv preprint arXiv:2103.04783, 2021.

[22] W. Wei, Y. Luo, F. Li, G. Xu, J. Zhong, W. Li, and P. Wang, “Gpr:
Grasp pose refinement network for cluttered scenes,” arXiv preprint
arXiv:2105.08502, 2021.

[23] O. Taheri, N. Ghorbani, M. J. Black, and D. Tzionas, “Grab: A dataset
of whole-body human grasping of objects,” in European Conference
on Computer Vision (ECCV), 2020.

[24] Y.-W. Chao, W. Yang, Y. Xiang, P. Molchanov, A. Handa, J. Tremblay,
Y. S. Narang, K. Van Wyk, U. Iqbal, S. Birchfield et al., “Dexycb:
A benchmark for capturing hand grasping of objects,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[25] P. Grady, C. Tang, C. D. Twigg, M. Vo, S. Brahmbhatt, and C. C.
Kemp, “Contactopt: Optimizing contact to improve grasps,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[26] J. Romero, D. Tzionas, and M. J. Black, “Embodied hands: Modeling
and capturing hands and bodies together,” ACM Transactions on
Graphics, (Proc. SIGGRAPH Asia), 2017.

[27] A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational
grasp generation for object manipulation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
2901–2910.

[28] M. Liu, Z. Pan, K. Xu, K. Ganguly, and D. Manocha, “Deep differen-
tiable grasp planner for high-dof grippers,” in Robotics: Science and
Systems (RSS), 2020.

[29] Y. Li, T. Kong, R. Chu, Y. Li, P. Wang, and L. Li, “Simultaneous
semantic and collision learning for 6-dof grasp pose estimation,” arXiv
preprint arXiv:2108.02425, 2021.

[30] C. Eppner, A. Mousavian, and D. Fox, “A billion ways to grasp: An
evaluation of grasp sampling schemes on a dense, physics-based grasp
data set,” arXiv preprint arXiv:1912.05604, 2019.

[31] M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir,
M. Elbadrawy, A. Lodhi, and H. Katam, “Blenderproc,” arXiv preprint
arXiv:1911.01911, 2019.

[32] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,” arXiv
preprint arXiv:1706.02413, 2017.

[33] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[34] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting
for 3d object detection in point clouds,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019.

[35] D.-H. et al., “trimesh,” https://trimsh.org/, 2019.
[36] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier

to entry of complex robotic software: a moveit! case study,” Journal
of Software Engineering in Robotics, Special issue on Best Practice
in Robot Software Development, 2014.

720

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on August 08,2023 at 01:36:42 UTC from IEEE Xplore.  Restrictions apply. 


